Real analysis

Xuanfei Ren*

2023, 5, 20

1 Examples in class

Because the scope of the exam is small, there are not many examples, and the convergence section
 is not included.

4 1. Cantor/ Cantor-like sets and properties, Cantor-Lebesgue function;

5 2. Monotonically decreasing set's measure continuous? $E_i = \{(x, y) | |y| \le \frac{1}{i}\};$

6 3. Borel sets, Lebesgue measurable sets, $2^{\mathbb{R}^d}$, Vitali set;

7 4. Egorov for $m(E) = \infty$? $f_k = \chi_{[-k,k]}$;

8

1

2 Examples and properties from the exercises

From exercises in Stein's book: The exercises in this book are either examples or counter-examples
 of properties in class, or you can learn something new by doing them.

- 2. An example of an open set O with the following property: the boundary of the closure of O has
 positive Lebesgue measure.(Chapter1 Ex9)
- 3. A decreasing sequence of positive continuous functions on the interval [0, 1], whose pointwise limit
 is not Riemann integrable. (Chapter1 EX10)

4. Every open set in \mathbb{R} is the disjoint union of open intervals, but in \mathbb{R}^d it is false(Chapter1 Ex12).

5. Learn about F_{σ} and G_{δ} sets. Open? Close? Borel? (Chapter1 Ex13).

- 18 6. Covering by a finite number of intervals will not suffice in the definition of the outer measure.
- ¹⁹ 7. Define the outer measure by taking coverings by rectangles(Chapter1 Ex15).
- 8. Regarding the set operation A + B (Chapter1 Ex19,20).

^{11 1.} Cantor (Chapter1 Ex1-4).

^{*}University of Science and Technology of China; email: xuanfeiren@mail.ustc.edu.cn or xuanfeir@gmail.com

3 KNOWLEGE FRAME

- 9. There is a continuous function that maps a Lebesgue measurable set to a non-measurable set(Chapter1 Ex21).
- ²³ 10. Cantor, Non-measurable, something holds for measurable sets do not hold;(Chapter1 Ex31-35).
- ²⁴ 11. Zero-measure curve (Chapter1 Ex37, Chapter2 Ex7).
- 12. Continuity of d(x, F) (Chapter 2 Ex5);
- 13. Integrability of f on R does not necessarily imply the convergence of f(x) to 0 as $x \to \infty$; (Chapter 2 Ex6)
- ²⁸ 14. Tchebychev inequality;(Chapter2 Ex9)
- 15. Give an example of two measurable sets A and B such that A + B is not measurable.(Chapter2
 Ex13)
- ³¹ 16. Integrable but unbounded in any interval;(Chapter2 Ex15)
- ³² 17. Riemann-Lebesgue lemma (Chapter2 Ex22);

3 Knowlege frame

33

• Outer measure

36	- Volume for rectangles
37	– Properties
38	* Countable subadditivity
39	* External regularity
40	* Positive distance additivity
41	* Cut cubes without losing volume
42	* Translation invariance
43	• Measure
44	– Equivalent definition
45	– Measurable set structure: F_{σ}, G_{δ}
46	– Properties
47	* B-C lemma
48	* Countable additivity
49	* Continuity of measure
50	* Compact set approximation
51	* Finite square symmetric difference approximation
52	* Invariance

3.2Measurable functions 53 • Equivalent condition 54 • Approximation theorem: simple, step, pointwise, a.e., monotonous, ... 55 • Convergence analysis 56 • Theorem: Egorov, Lusin 57 3.3Lebesgue Integral 58 - Construction: simple \rightarrow nonnegative \rightarrow integrable 59 • Commutative order theorem: MCT, Fatou, DCT, Tonelli, Fubini 60 • Properties 61 - Absolute continuity 62 - Translational continuity 63

- Small in the distance and high places, i.e. $\int_E |f| \le \varepsilon$ for $E = \{f \le M\}$ or $E = B^c$ where B is a large ball.